Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2025

Harmonic functions on finitely-connected tori

Chiu-Yen Kao
  • Fonction : Auteur
  • PersonId : 1493732
Braxton Osting
  • Fonction : Auteur
  • PersonId : 1493733
Édouard Oudet
  • Fonction : Auteur
  • PersonId : 1358271

Résumé

In this paper, we prove a Logarithmic Conjugation Theorem on finitely-connected tori. The theorem states that a harmonic function can be written as the real part of a function whose derivative is analytic and a finite sum of terms involving the logarithm of the modulus of a modified Weierstrass sigma function. We implement the method using arbitrary precision and use the result to find approximate solutions to the Laplace problem and Steklov eigenvalue problem. Using a posteriori estimation, we show that the solution of the Laplace problem on a torus with a few circular holes has error less than $10^{-100}$ using a few hundred degrees of freedom and the Steklov eigenvalues have similar error.
Fichier principal
Vignette du fichier
2309.12459v1.pdf (12.66 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04902181 , version 1 (20-01-2025)

Identifiants

Citer

Chiu-Yen Kao, Braxton Osting, Édouard Oudet. Harmonic functions on finitely-connected tori. SIAM Journal on Numerical Analysis, In press. ⟨hal-04902181⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More