On the set of bad primes in the study of the Casas-Alvero conjecture - Université Toulouse 1 Capitole
Article Dans Une Revue Research in Mathematical Sciences (RSMB) Année : 2024

On the set of bad primes in the study of the Casas-Alvero conjecture

Résumé

The Casas-Alvero conjecture predicts that every univariate polynomial over a field of characteristic zero having a common factor with each of its derivatives H i (f ) is a power of a linear polynomial. One approach to proving the conjecture is to first prove it for polynomials of some small degree d, compile a list of bad primes for that degree (namely, those primes p for which the conjecture fails in degree d and characteristic p) and then deduce the conjecture for all degrees of the form dp ℓ , ℓ ∈ N, where p is a good prime for d. In this paper we calculate certain distinguished monomials appearing in the resultant R(f, H i (f )) and obtain a (non-exhaustive) list of bad primes for every degree d ∈ N \ {0}.

Fichier principal
Vignette du fichier
RMSB-S-23-00257.pdf (505.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04798661 , version 1 (22-11-2024)

Identifiants

Citer

Daniel Schaub, Mark Spivakovsky. On the set of bad primes in the study of the Casas-Alvero conjecture. Research in Mathematical Sciences (RSMB), 2024, 11 (2), ⟨10.1007/s40687-024-00444-z⟩. ⟨hal-04798661⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More