Controlled superprocesses and HJB equation in the space of finite measures - Département de mathématiques appliquées
Pré-Publication, Document De Travail Année : 2023

Controlled superprocesses and HJB equation in the space of finite measures

Résumé

This paper introduces the formalism required to analyze a certain class of stochastic control problems that involve a super diffusion as the underlying controlled system. To establish the existence of these processes, we show that they are weak scaling limits of controlled branching processes. First, we prove a generalized Itô's formula for this dynamics in the space of finite measures, using the differentiation in the space of finite positive measures. This lays the groundwork for a PDE characterization of the value function of a control problem, which leads to a verification theorem. Finally, focusing on an exponential-type value function, we show how a regular solution to a finite--dimensional HJB equation can be used to construct a smooth solution to the HJB equation in the space of finite measures, via the so-called branching property technique.
Fichier principal
Vignette du fichier
main.pdf (447.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04145247 , version 1 (29-06-2023)
hal-04145247 , version 2 (17-07-2023)
hal-04145247 , version 3 (18-11-2024)

Identifiants

Citer

Antonio Ocello. Controlled superprocesses and HJB equation in the space of finite measures. 2024. ⟨hal-04145247v3⟩
49 Consultations
37 Téléchargements

Altmetric

Partager

More