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GLOSSARY  

Carbohydrates are a family of biomolecules, ubiquitous in Nature, based on a common 

polyhydoxylated backbone though varying in size (from small molecules to macromolecules), 

in fine structure (configuration and functionalization), and possessing a wide range of 

biological properties and roles making them indispensable to life. 

Amphiphiles are molecular architectures with parts exhibiting different types of polarity, 

generally including hydrophilic and hydrophobic groups. 

Surfactants are molecules possessing the ability to modulate interfacial tension, notably 

water surface tension. 

Bio-based chemicals are chemical products which are obtained by transformation of a 

starting material arising from biomass, such as carbohydrates, fats, proteins, terpenes. 
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DEFINITION OF THE SUBJECT 

Surfactants are commodity chemicals used in an incredibly wide range of situations of the 

everyday life, and must therefore be improved constantly in terms of environmental impact, 

sustainability and performance. One way towards more sustainable surfactants is the use of 

renewable resources as raw materials for their manufacture, in place of fossil ones. Since the 

structure of surfactant combines a polar part to a hydrophobic one, carbohydrates, which are 

very polar molecules, appear as ideal candidates for serving as renewable building blocks in 

the synthesis of bio-based surfactants. Developed first with the aim of providing added-value 

to some agricultural crops and by products, this strategy shows nowadays a rebirth in the 

context of green and sustainable chemistry. The chapter illustrates, from the chemical point of 

view, the diversity of molecular structures which belong to the family of carbohydrate-based 

surfactants. 
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INTRODUCTION 

Surfactants are amphiphilic organic molecules combining polar and non-polar moieties, and 

which exhibit specific physico-chemical properties connected to their ability to locate at the 

interface between phases of different polarity, either at the air/water, oil/water and 

solid/water, or to self-associate in micelles or liquid crystalline aggregates [1]. Their main 

property is to modulate the physicochemical characteristics of aqueous solutions such as 

interfacial tension or viscosity. This is the basis for their utilization in many applications, such 

as household and cleaning detergents, home and personal care products, cosmetics, foods, 

paints, inks, pesticides, polymers, textiles, lubricants, pharmaceutics, mining, oil and gas 

recovery [2]. In terms of fundamental science, these properties and applications relate to many 

topics, notably the physical chemistry of colloids and complex media, the physics of 

multiphasic chemical systems, and, in connection with biology, liquid crystalline 

architectures, membrane engineering, vaccine adjuvant technology, transfection 

methodologies, among others.  

Surfactants are commodity and specialty chemicals characterized by i) their use by all human 

beings in their everyday life, ii) very large tonnages, and iii) a product end-of-life in the waste 

water or environment. Therefore they require a careful design for preventing undesired 

pollution or toxic effects. The large quantities which are produced also suggest that renewable 

resources, better than fossil ones, should be preferred for their design and manufacture. 

Nowadays, with the change of paradigm of the chemical industry towards more sustainable 

chemicals and processes, there is a renewal of interest for the development of novel kinds of 

bio-based surfactants, and novel cleaner and safer processes towards them. The goal is to 

meet the expectations of end-user consumers asking for safer products, and of authorities 

implementing regulations aiming at limiting the risk and hazards of industrial chemical 

production sites. In particular, “bio-based surfactants” dedicated to the personal care and 

detergents sectors are expected to account for significant growth in the surfactant market [3] 

even though petroleum-based surfactants still dominate due to their lower cost and already 

redeemed investments. Nevertheless, the surfactant market being a very competitive one, 

manufacturers are making constant efforts for broadening their products with improved 

performance and sustainability. Because of the concerns about the sustainability of existing 

products and the long-term availability of petrochemical feedstocks, bio-based surfactants will 

certainly gain market share.  
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Actually, the use of bioresources for the preparation of surfactants has already a long history, 

for two main reasons. Firstly, the natural hydrophilicity and hydrophobicity of some 

biomolecules, such as carbohydrates and lipids, provides the necessary duality for designing 

surfactants. Secondly, it has been an opportunity to provide added value to some low value 

agricultural crops. This is why several families of bio-based surfactants can be considered as 

“historical” ones, such as alkyl polyglycosides (APG) or carbohydrates fatty acid esters 

(Figure 1), with world markets in the 100 000 and 10 000 t/y range, respectively. The bio-

based surfactants represent about 3.5 million tons (≈ 25%) of the surfactants and detergents 

market. With respect to the hydrophilic moiety, still almost half of the industrial nonionic and 

ionic surfactants are based on a polar moiety made from polyethoxylated units 

(polyethoxylated fatty alcohols, ethoxylated sorbitan esters, sodium laurylethersulfate), 

despite the safety and toxicity concerns and the fossil origin. Finding alternatives for the 

hydrophilic moiety is therefore an important issue, and carbohydrates, arising from renewable 

crops, and owing to their polyhydroxylated structure, appear as ideal candidates. Since fats 

(for the hydrophobic moiety) are also abundantly available from renewable resources, the 

combination of fats with carbohydrates is a straightforward way to synthesize 100% bio-based 

surfactants [4-12].  

Besides synthetic carbohydrate based surfactants (CBS), naturally occurring ones also exist, 

referred to as glycolipids in biochemistry, mostly found in cell membranes form various types 

of living organisms, such as, among many others, the rhamnolipid depicted in Figure 1 [4-

6,13,14]. Their amphiphilic character is not always taken into account; however, it certainly 

plays an important role in their biological properties, at it defines their location in organized 

architectures such as cell membranes where key biological processes take place. Being 

biomolecules of natural origin means that biotechnological processes can also be envisaged 

for the production of CBS. 

 

Figure 1. Typical examples of synthetic (APG, SE) and natural carbohydrate-based 

amphiphiles (dirhamolipid RL2). 
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The use of carbohydrates for designing bio-based chemicals is a wide topic which covers not 

only surfactants but also polymers, solvents, etc, and has become a complete topic as such in 

the scientific community, gathering all fields of chemistry (organic synthetic, catalytic, 

theoretical, physical, materials, analytical, biotechnological…) [15-23]. Carbohydrates are 

complex, multifunctional molecules with high oxygen content. Their chemistry is 

characterized by : i) moderate thermal stability requiring specific mild reaction conditions; ii) 

a limited choice of solvents able to match their high polarity; iii) selectivity issues of two 

kinds, regioselectivity and degree of substitution (DS); iv) complexity of products containing  

mixture of isomers with consequences on separation and isolation issues. Furthermore, 

structural differences arising from these selectivity issues lead to significant differences in the 

physicochemical properties and therefore to the possible applications. For example, mono- or 

disubstituted fatty esters of sucrose lead to inverse types of micelles (Figure 2), and two 

different monosubstituted ones, for which the chain is located to one or another position of the 

sugar backbone, will also exhibit aggregate morphology variation [24-26].  

 

Figure 2. Influence of DS on solution properties: oil-in-water monostearoylsucrose stearate 

aggregates (left), water-in-oil disteraroyl sucrose aggregates (right). 

One important challenge, typical for all reactions targeting amphiphilic compounds, is the 

difficulty to accommodate the reactants in one solvent, in spite of their opposite polarities. 

They tend to separate, at least partially, forming interfaces or concentration gradients 

preventing a precise monitoring of the stoichiometry. If catalysts are present, one question is 

to know where they will locate within this complex medium. In an heterogeneous medium, 

the first products obtained (monosubstituted) tend to stand at the interface and can be readily 

substituted again into a di- or polysusbtituted derivative, faster than the conversion of the 

naked starting sugar. Strong dependence of the solvent and medium heterogeneity of the 
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resulting DS is thus observed, and maintaining sufficient homogeneity, either by the use of 

additives of mixtures of solvents is necessary when low-substituted compounds are targeted. 

The amphiphilic products themselves help, thanks to their amphiphilic character, improving 

the homogeneity of the mixture (autocatalysis) [27-31].  

The purpose of this chapter is to share the vision of carbohydrate chemists on synthetic 

carbohydrate-based surfactant (CBS) and to illustrate the diversity of molecular structures 

which can be found in this family; as a complement to important reviews, books and chapters 

published throughout the past decades [4-10,32,33]. The focus is made on the structural 

aspects and synthetic aspects, and giving basic information or referring to the relevant 

literature with respect to their physicochemical properties and applications.  “Small molecule” 

surfactants (functionalized mono-, di-, oligosaccharides) are discussed below, whereas 

amphiphilic polysaccharides, being related to polymers and materials, differing from small 

molecules in synthetic, characterization and manufactures issues are not covered. Natural 

CBS, such as sophorolipids, viscosin, trehalolipids, cellobiolipids, will not be discussed 

either, however several reviews cover this topic [4-7]. The spine of the chapter (Figure 3) is 

the connective chemical function (acetal, ester, ether, nitrogen-related linkages, C-glycosidic, 

furanic) between the polar and the non-polar moieties. This connection is of prime importance 

because it relates firstly to the required reaction and manufacture processes, and secondly to 

the chemical sensitivity of the final products with respect to acid or basic conditions, and 

consequently to the range of possible applications. For example, esters, which are unstable 

under basic conditions, can generally not be used in detergency which often performs in basic 

conditions, whereas acetals (acid-sensitive) cannot be used in applications running in strongly 

acidic conditions. 

 

Figure 3. Main chemical connections found in carbohydrate-based amphiphiles. 
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Glycosides and other acetals 

In carbohydrate chemistry, two kinds of acetals can be distinguished, those involving the 

anomeric carbon, referred to as glycosides, and those involving simple hydroxyl groups on the 

backbone (Figure 4). They generally show excellent stability under basic conditions, a 

requirement for applications in detergency.  

 

Figure 4. Various types of acetal linkages found in carbohydrate derivatives. 

 

Glycosides 

The glycosylation reaction is central in carbohydrate chemistry. The most direct one, referred 

to as the Fischer reaction, is the acid catalyzed reaction of a carbohydrate (having its carbonyl 

group available or engaged in its hemicetal form) and an alcohol (Figure 5) [34]. The first step 

is the protonation of the hemiacetalic hydroxyl group and loss of a water molecule forming 

the glycosyl cation, a highly electrophilic species, stabilized by the pyranosic oxygen lone 

pairs. Then, any reactive nucleophilic molecule can add on this cation, forming the glycoside. 

The alcohol is often used in excess quantities, thus serving also as solvent to the process. 

Though simple at a first glance, the reaction shows some level of complexity because several 

products can be actually formed: furanosides or pyranosides ( 5 or 6 membered rings 

respectively),  or  anomers ( depending on the orientation of the glycosidic bond), as well 

as  bicyclic anhydro products arising from intramolecular glycosidation  or random oligomers 

produced by glycosylation of any carbohydrate hydroxy groups   (instead of the external alkyl 

alcohol),   with either pyranose or furanose rings and  or  configurations. This process is 

the theoretical basis for the manufacture of alkylpolygycosides (APGs). 
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Figure 5. The Fischer reaction and its various possible products. 

 

A base catalyzed alternative referred to as “anomeric alkylation” (Figure 6) which involves 

the reaction of the free anomeric hemiacetalate with electrophiles such as alkyl halides or 

alkyl sulfates is also a one-step access to alkyl glycosides [35,36]. Another process in which 

the anomeric OH serves as nucleophile is the telomerization of butadiene in presence of 

carbohydrates, which is more detailed in the “ether” section [37-43]. For targets of biological 

relevance for which a high level of selectivity is required, multistep sequences, using 

protecting-deprotecting selective strategies and subtle anomeric activations [44-46] are more 

appropriate than the less selective direct Fisher reaction. Fortunately, with respect to 

surfactants, the formation of mixtures of products and isomers is not an obstacle to their uses 

and applications, despite significant variations in their properties depending on their intimate 

structure. 

 

Figure 6.  The alternative anomeric alkylation towards glycosides. 

 

APGs exhibit very satisfactory safety for end users and excellent biodegradability, thus 

exhibiting no handicap with respect any environmental concern [47-51]. This is why APGs, 

alkyl polyglycoside could be developed with a real success, with first patents referring back to 

the 1930’s, [52] and the unusual physicochemical behavior of long chain glucosides was even 

already mentioned back in 1911 by Fischer and Helferich [53]. Real industrial production 
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started in the 1970s (Rohm & Hass) and have reached now a market close to 100 000 tons per 

year [47-51]. Main applications are uses in cosmetic and personal care formulations, in hard 

surface and laundry detergents, as adjuvants (notably for agrochemicals), with variations in 

properties depend essentially on the aglycone chain length. Their excellent compatibility with 

the skin make them ideal non-ionic surfactants used in hand dishwashing formations and other 

situations where contact with skin is frequent. Alternative uses of some specific glycosides, 

notably those incorporating a phenyl ring in the aglycone moiety, have been reported in the 

field of gelators [54-57]. When the phenyl ring is a galloyl residue, the compounds exhibit 

both surfactant and antioxidant properties [58]. Several important companies are involved in 

this sector, among other, Cognis, Henkel, Akzo Nobel, BASF, SEPPIC, KAO…. The field 

has been reviewed, with respect to process, manufacture, properties and applications in 

several reviews and chapters, covering the contributions of many academic and industrial 

research groups, notably by von Rybinski and Hill who have been more than any others 

involved in the development of APGs [47-51]. 

 

Besides selectivity, another important issue is the medium heterogeneity due to the use of  

hydrophobic alcohols (necessary to build the amphiphilic character of the target). Unlike for 

the reaction of glucose with methanol leading easily to methyl glycosides, when a long chain 

hydrophobic alcohol is used, the low solubility of the carbohydrate slows down the reaction, 

and side formation of anhydro products and oligomers, as well as formation of dialkylethers 

arising from the self reaction of the fatty alcohol, strongly limit the overall efficiency of the 

reaction. This can be circumvented by the implementation of a two-step protocol (Figure 7), 

involving a first stage using butanol, in which the starting carbohydrate is soluble enough, 

forming intermediate butyl glycosides, followed in a second stage by an acetal exchange with 

a long chain alcohol in an equilibrated process driven by the evaporation of the lighter 

butanol. Not only glucose can be used as substrate, but also short dextrans which 

depolymerize in situ. Sulfonic acids are the acid catalysts typically used in this reaction. 

Additives such as 2,5-furandicarboxylic acid (FDCA) [59], was found to improve the 

glucosylation of decanol, with less by-products formed therefore giving a lowered colored of 

the final product, an important parameter for applications such as cosmetic formulations [60-

62].  
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Figure 7.  The two-step process towards alkylpolyglycosides via the butyl glycoside route. 

First applied to the very available glucose, the one –step or two step processes have since be 

applied to a variety of starting carbohydrates, therefore all kinds of glycosides arising from 

other hexoses (galactose, mannose…). Uronic acid such as galacturonic acid, found in 

significant amount in sugar beet pulp, can be also used, leading to an ionic APG (Figure 8). 

The carboxylic acid present at position 6 can also be esterified in the course of the reaction, 

leading to bis-substituted amphiphilic compounds. Pentoses (xylose, arabinose) are also 

interesting substrates as they are widely present in some non-food hemicellulosic feedstocks. 

Similar strategies applied to mannuronic acid (obtained from alginate) lead to 

alkylmannopyranosiduronate surfactants [63-66]. More complex systems, such as gemini-type 

surfactants in which two APGs are connected covalently by their polar head, have been built 

either with ether or ester links between the two sugar moieties. 

 

Figure 8. The wide range of structures possibly found in the APG family. 
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Presently, in order to get more cost effective processes towards APGs and enabling a wider 

range of applications, research is now focusing on using directly cheap and available non-

food resources, such as cellulose or hemicelluloses. The processes must combine the 

depolymerisation (acid catalyzed hydrolysis) of the polysaccharides to monosaccharidic units 

and their reglycosylation with the external fatty alcohol. In this respect, several groups have 

recently proposed efficient catalytic systems (Figure 9). For example, Villandier and Corma 

used Amberlyst-15Dry for the reaction of cellulose to APGs with chain length up to C12 [67-

69]. For longer alcohols, for which yields tend to decrease in the direct glycosylation reaction, 

an alternative strategy is to run first the depolymerisation-glycosylation in methanol to get the 

methyl glycosides under the conditions of Zhang and Wang using, as acid catalyst, an 

heteropolyacid such as H3PW12O40, and subsequently a transglycosylation with a longer 

alcohol, using Amberlyst-15Dry which was found to be the most efficient catalyst [70]. 

Perfluorosulfonic acid (PFSA) Aquivion PW98, an amphiphilic solid superacid, was recently 

reported to provide good yields of decylglycosides from cellulose and decanol, with a 

mecanocatalytic depolymerisation step. The catalyst was found to be easily recyclable [71]. 

Under sub-critical conditions, the acidity of alcohols can reach the level which is required for 

promoting the depolymerization-glycosylation reaction, thus enabling a direct conversion 

without any additional catalyst [72]. Direct transformation of agricultural by-products such as 

wheat straw, which contain hemicellulose as major component, can be performed. Carefully 

optimized pretreatment allows satisfactory valorization of the all components of the resource 

including lignin derivatives and hydroxymethylfurfural (HMF) besides the formation of 

alkylpentosides [73]. Other efficient media for the direct transformation of polysaccharides 

include the use of ionic liquids, as in the case of the transformation of xylan into alkyl 

xylosides [74].  

 

Figure 9.  Catalysts used in the direct transformation of polysaccharides towards APGs. 
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Biotechnological processes leading to APGs have been proposed. Glycosidases (enzymes 

which cleave glycosidic bonds) and glycosyl-transferases (enzymes which make glycosidic 

bonds) are widely distributed in living organisms, and are able to work either in their natural 

pathway or in the reverse one. Glycosidase, when used in presence of high quantities of 

alcohol and low water content can reverse their activity towards the synthesis of glycosides 

(Figure 10) [75-86]. APGs with hydrophobic chains have been prepared using many types of 

purified enzymes and, sometimes, crude plant extracts containing enzymes. Though the 

processes appear efficient, the yields tend however to decrease upon increasing the alcohol 

chain length. Intense research is conducted to overcome these yield issues and will likely 

propose soon efficient alternatives to the chemical route, either by glycosylation or 

transglycosylations. Difficulties to be overcome are the availability of the enzymes and the 

possibility to use simple carbohydrates donors, instead of activated ones which are less 

available for large scale processes. Nowadays novel strategies also involve enzyme 

engineering and directed mutagenesis, offering taylored enzymes exhibiting improved 

efficiency, better adaptability to a wider range of media, able to accommodate to a larger 

substrate diversity and showing increased product selectivity. It is foreseen that biorefineries 

will include more and more biological steps in the future due to the rapid progress of the 

availability of novel biocatalysts. 

 

Figure 10. Examples of glycosidases used for biotechnological accesses towards APGs. 

Finally, APGs can be functionalized further (Figure 11), for example by carboxymethylation 

or succinylation, thus proposing a bio-based solution to applications requiring anionic 

surfactants [47,50,13,76]. Polycarboxylates obtained by esterification with citric anhydride 

[87], polyphosphates [88], cationic systems obtained by transtesterification with glycine 

betaine butyl ester [89], as well as systems including pH and photocontrollable functional 

group [90] have also been reported. Let us also mention that thio analogues of APGs, in 

which the O-glycosidic atom is replaced by a sulfur one have been prepared by reaction of 
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carbohydrate peracetates and long chain thiols using catalytic amounts indium bromide as 

catalyst [91]. Long chain alkyl glycosides, being amphiphilic, are soluble in a wider range of 

solvents and can therefore be preferred to unprotected carbohydrates for some 

transformations, such as their addition to epoxidized fatty esters, leading to novel bolaphilic 

systems [92] or in some enzymatic esterifications [93]. 

 

Figure 11. Examples of modified APGs. 

Acetals 

The reaction of a pair of carbohydrate hydroxyl groups with an external carbonylated 

compound is frequently used in strategies requiring a temporary protection. For example, the 

acid catalyzed reactions of carbohydrate diols with acetone or benzaldehyde are classical 

accesses to selectively protected carbohydrates, with preferred formation of 5- or 6-membered 

ring acetals, respectively. If the carbonyl compound exhibits some hydrophobic character, 

amphiphilic acetals are obtained. First examples were reported by Mietchen in 1988 [94] who 

prepared 4,6-O-alkylidene D-glucose derivatives from aliphatic C7 to C12 aldehydes (Figure 

12) [26]. Bethel, the same year, studied the effect of chain length on the mutarotation (the 

equilibrium between the equatorial and axial forms of the anomeric hemacetal) in various 

solvents, demonstrating the subtlety of the self-association properties as a function of 

structures. Later on, Thiem and Mietchen [95] studied the liquid crystalline properties of these 

acetals. Okahara and colleagues [96] reported an interesting example of novel amphiphilic 

acetals prepared in two steps, first the acetalization of glucono-1,5-lactone, followed by 
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alkaline hydrolysis of the lactone linkage. The obtained amphiphiles, with three hydroxy 

groups, a sodium carboxylate group and a long chain acetal are possibly cleavable under acid 

conditions [97]. 

An important work has been done on the use of sucrose (the very available sugar used in food, 

produced from sugar beet or sugar cane) as a raw material towards diverse kinds of chemicals 

[18], including various types of amphiphilic derivatives as it will be seen in several sections 

of this chapter. Amphiphilic acetals of sucrose have been described by Gelas [98], then by 

Queneau [99,100]. Sucrose is a disaccharide in which glucose and fructose are connected 

through a very acid-sensitive glycosidic bond, an issue in the acetalization reaction which 

requires acid catalysis. Starting from a dimethylacetal of the aldehyde, there is no need to 

eliminate water from the medium, and lower reaction temperatures and milder acidic 

conditions can be used, preventing the undesired acid-catalyzed hydrolysis of the 

disaccharidic backbone. Even milder conditions can be used if the starting dimethylacetal is 

formed from an ,-unsaturated aldehyde, making possible to use very mild acidic resins 

prepared from lanthanide triflates. Amphiphilic acetals of methyl glycoside [101] can be 

further reduced to amphiphilic ethers [102,103] (vide infra). Reaction of sugars with 

alkylhalogenomethylethers in basic conditions lead to mixed acetals and are alternative 

carbohydrate-based acid labile amphiphilic acetals [104,105]. Other systems with a more 

equilibrated hydrophilic-lipophilic balance can exhibit gelating properties, such as 4,6-

benzylidene acetals of methylglucoside variously substituted on the phenyl ring [106-108].  

 

Figure 12. Examples of amphiphilic carbohydrate acetals (other than APGs). 
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Esters 

Carbohydrate based amphiphilic esters can be obtained by esterification of carbohydrates 

hydroxyl groups with fatty acids, or transtesterifications with fatty acid methyl esters. Most 

processes use polyols, such as sucrose or sorbitol, as starting materials, though some 

examples with reducing carbohydrates, having their anomeric hydroxyl group unprotected, 

have also been reported. The alternative sense of esterification by reaction of sugar acids or 

lactone with a fatty alcohol is also well documented (Figure 13) [109-115]. 

 

Figure 13.  The two types of ester linkages arising from carbohydrate OH and fatty acids (up) 

or carbohydrate acids (onic, uronic) and fatty alcohols (down). 

Direct esterification or transesterification of totally unprotected carbohydrates (including a 

free anomeric hemiacetal) have been reported. The reaction using glucose and -

hydroxyacids, in absence of any other catalyst, produces esters with good 6-O-selectivity 

[116] however this is less appropriate for the industrial scale due to the lower availability of 

hydroxyacids compared to aliphatic ones. Another original protocol is the acylation of 

mannose as a mercaptopropanoyl ester at O-6, followed by thiol-ene ractions with alkynes of 

various chain lengths, leading to a range of amphiphiphilic products via a unique intermediate 

(Figure 14) [117,118]. In a two step procedure from malic acid, fatty acids and glucose, 

interesting glucose esters have been reported [119]. It is important to note that glucose esters 

can be also obtained in a very short procedure using directly some lignocellulosic biomass 

hydrolysate [120].  

 

Figure 14. Esters prepared from carbohydrates having a free anomeric OH. 
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However, due to its “carbonyl character”, the anomeric (hemiacetalic) hydroxy group 

complexifies the situation, with possible side reactions resulting in more difficult separation 

of the desired products and possible coloration. Moreover, anomeric esters are also known to 

be even less stable than at other positions. This is why polyols, such as sucrose or sorbitol, 

which do not have any free anomeric OH, have been preferred in for developing the industrial 

manufacture of amphiphilic esters.  

Sucrose esters (SE) are a historical example of carbohydrate based surfactants and are still 

produced and marketed. The processes which are very close to those still in use were patented 

in the 1950s [121-123]. Their manufacture thus relies more on the know-how than on PI. 

Esters being moderately stable in basic conditions, thus are less applicable to the field of 

detergency, but are appropriate for serving as food or cosmetic emulsifiers, with a market in 

the range of 10 000 tons per year. Triglycerides can be used instead of fatty acid methyl 

esters, leading to mixtures of sucroesters and mono- and diglycerides and glycerol, a complex 

mixture exhibiting however useful emulsifying properties. The chemistry of sucrose, 

reviewed in several accounts, is characterized by: i) a very acid sensitive interglycosidic bond, 

limiting the possibility to used strong acids; ii)  intramolecular hydrogen bonds which 

reinforce the peculiar reactivity of the hydroxy groups at position 2, 1’ and 3’; iii) for steric 

hindrance sensitive reactions, a preference for reactions at positions 6 and 6’; like other 

disaccharides, with 8 hydroxy groups, a large number of possible products depending on 

degree of substitution and regiochemistry [18]. 

Choosing the length of the fatty ester and degree of substitution provides a palette of 

compounds which cover the whole range of emulsification properties, from water-in-oil to oil-

in-water (cf introduction and Figure 2). Extensive structure-properties relationships studies 

have been conducted [111-113,124,125]. Several manufacturers produce sucrose fatty acid 

esters, among which Dai-Ichi Kogyo, Mitsubishi Kagaku Food, Croda, Sisterna, Evonik, 

Stearinerie Dubois. Depending on the DS and on the hydrophilic-hydrophobic balance (HLB), 

SE find a wide range of applications in food, cosmetic, pharmaceutical, personal care sectors, 

as emulsifiers, solubilizers, control relase agents, adsorption and penetration enhancers, 

lubricants or disintegrants. The most classical process is a transesterification reaction between 

sucrose and fatty acid methyl esters using a dipolar solvent such as DMSO and a basic 

catalyst such as potassium carbonate, under vacuum for displacing the equilibrium by 

removing methanol (Figure 15). Technical issues are the thermal stability of the solvent and 
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sucrose, the monitoring of the reaction progress, notably with respect to the degree of 

substitution, and the separation and isolation of the products from the reaction mixture. The 

homogeneity of the medium is important for preventing undesired over-substitution. 

Variations in the process include the use of no solvent conditions and the presence of fatty 

acid soaps as emulsifiers [28,29,126-129]. Subtle liquid-liquid extraction protocols allow 

efficient separation of sucrose esters of different DS, mono-, di- and triesters being the most 

interesting with respect to amphiphilic properties. Though the regioselectivity is also known 

to influence some physicochemical properties, the products are obtained and used as mixtures 

of regioisomers, with the ester groups located essentially at the primary positions. Indeed, 

whatever the outcome of the transesterification, intramolecular transesterifications take place 

and ester groups move from secondary towards primary positions [130-131]. 

 

Figure 15.  The base-catalyzed process towards amphiphilic sucrose esters. 

Thermotropic properties of sucrose esters were investigated using a series of mono- and di-

substituted esters, prepared using a sequence of chemical and enzymatic steps leading to all 

possible mono and homo- or hetero-diesters on the primary positions, with various chain 

length and level of unsaturation. This study demonstrates how much the chain length, the 

level flexibility (linked to the unsaturation level) and the regiochemistry influences the 

stability of the liquid crystalline phases, in connection with the molecular shape (Figure 16) 

[132-135]. 

 

Figure 16. Influence of chain position on the sucrose backbone on the transition (liquid 

crystal to isotropic liquid) in two regiosiomers of sucrose dilaurates. 
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The hydrophilic-hydrophobic balance (HLB) is a common parapeter used for indicating the 

polarity of surfactants, however, in the case of SE it can be misleading because their 

supramolecular behavior depends significantly on their molecular shape (which varies as a 

function of degree of substitution and regiochemistry whereas the calculated HLB keeps 

constant). Moreover, in commercial sucroesters, traces of remaining methyl ester or soap can 

still be present, leading to even more delicate comparisons between samples. It has been 

shown the Winsor diagrams provide richer information than the simple HLB calculation 

[136]. Another analytical limitation is due to the high polarity of the sugar esters and their 

resulting hygroscopicity, which can be a problem for physicochemical characterizations 

requiring a precise measurement of the concentration. This can be solved by using in situ 

concentration measurements using the ERETIC NMR spectroscopy method [137]. 

The reaction of sucrose in water with hydrophobic acid chloride and chloroformates was 

studied by Queneau and coworkers, showing i) that sucrose, being more acidic than water, 

reacts with the acid chloride faster than water, ii) the reaction takes place first on the more 

reactive secondary positions, then acyl or alkyloxycarbonyl group migrations occur iii) 

medium heterogeneity (increasing when using longer fatty chains) is responsible for 

oversubstitution except when using huge excess of sucrose [27,138], whereas the reaction 

performs easily for short acids chlorides. Similar observations were made when studying the 

aqueous reaction of sucrose with isocyanates leading to carbamates (vide infra). Direct 

reaction with fatty acids is not compatible with sucrose due to ist low stability in acidic 

conditions. Epoxidized unsaturated fatty acid esters, can be used in place of simple aliphatic 

ones, like in the recent work in which the reaction of several carbohydrates with methyl 

epoxyoleate. The obtained esters were subsequently hydrated to diols exhibiting interesting 

self-organization ability benefiting to selective formation of polyurethanes [139,140]. 

Esterification of carbohydrates using enzymes have been extensively studied [111, 141-143]. 

Hydrolases, such as lipases or proteases, have a hydrolytic function of esters or amides, in the 

presence of water. When these enzymes are used in other solvents and in absence of water, if 

an acyl group donor and an alcohol (here the carbohydrate) are present, they can work in the 

synthetic sense, reverse to their natural function. The high specificity towards substrates and 

high selectivity towards products of enzymatic reactions is a very interesting advantage for 

reactions which normally lead to complex mixtures. The main issues in enzymatic synthesis 

of carbohydrate esters are: the availability of the enzymes, the type of acyl donor (activated or 
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native carboxylic acids), the choice of the solvent. This latter must solubilize the unprotected 

carbohydrate (not so difficult for monosaccharides but often a limitation for disaccharides or 

larger carbohydrates) while keeping the enzyme in an active three-dimensional conformation. 

Though water must be excluded for preventing the enzyme to work in the hydrolysis sense, 

some small amounts of water must be however present for preserving the H-bond network 

responsible for the 3D structure of the protein, and keeping its catalytic activity. A subtle 

balance in the water content must be thus defined for each case, since several parapeters 

influence the hydration equilibrium (nature of solvent, hydration of the carbohydrate 

substrate, quantity of enzyme, temperature…). Whereas some enzymatic procedures require 

the use of activated acyl donors, such as a vinyl ester, cyanoethyl, or trifluoroethyl esters, 

some can proceed directly with the carboxylic acid, and are therefore more appropriate in 

strategies of industrial relevance. Two consecutive enzymatic reactions or combination of 

chemical and enzymatic steps can lead to tailored disubstituted esters with mixed chain length 

and functions, for example one fatty chain and one polymerizable group [93]. Other complex 

systems design for organogelation have been prepared through enzymatic procedures [144]. 

Sorbitol (other name of glucitol, the hydrogenation product of glucose) is another very 

available polyol, produced on the industrial scale and applied as ingredient or additive in 

foods, cosmetics or pharmaceutical formulations. When heated with fatty acids, the 

esterification takes place, leading to mixtures of esters at primary and secondary positions, 

with, like in other polyols and carbohydrates, possible migrations form one OH to the 

neighbouring one. The final products are therefore the thermodynamic mixture of various 

esters at all positions. Like other carbohydrates and polyols, the esterification of sorbitol can 

lead to mono- di- or polyesters, which will exhibit significant differences in their properties. 

The acidity of the medium, heating, and removal of water promote the concomitent 

cyclodehydration of sorbitol to sorbitan, and further to isosorbide (Figure 17). These products 

posses only four and two hydroxyl groups, respectively, which undergo esterification. 

Alternative enzymatic esterifications of sorbitan are also reported [145,146]. A wide range of 

products showing hydrotropic properties can therefore be obtained [147].  

Glucuronic acids or their lactone derivatives are useful resources for the preparation of 

carbohydrate esters, by reaction with fatty alcohols. Both chemical and enzymatic procedures 

towards amphiphilic glucuronates have been reported (Figure 18) [148-156]. Though very 



20 

 

close in structure compared to acylated sugars, this change in the OCOR vs COOR linkage 

has some influence on the properties [157]. 

 

 

Figure 17. The competition between esterification and dehydration during the reaction of 

sorbitol with fatty acids. 

 

Figure 18.  Amphiphilic uronates obtained using fatty alcohols. 

 

Ethers 

This section concerns amphiphilic ethers obtained by alkylation of carbohydrates hydroxyl 

groups (other than the anomeric one) using hydrophobic electrophilic reagents. Such products 

are characterized by their high chemical stability under acid and under basic conditions. They 

differ from the alkylation products of the anomeric hydroxyl group of carbohydrates, which 
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are acid sensitive glycosides (those are discussed in the APG-acetal section, vide supra). 

Several direct methods leading to ethers are discussed below (Figure 19). 

The most classical method is the Williamson reaction, namely the base catalyzed reaction of 

carbohydrate hydroxyl groups with fatty alkyl halides (chlorides, bromides…). The reaction 

produces one equivalent of salt as side product [158]. Like other base-catalyzed processes, 

easier is to use polyols (sucrose, sorbitol and other alditols) than substrates which still possess 

their free anomeric hemiacetal. Monitoring the reaction with respect to regioselectivity and 

the degree of substitution remains, like in previous types of derivatives, a key issue. 

Alternative multistep procedures have also been reported [10, 134,159,160] and interesting 

studies on the structure-properties relationships of liquid crystalline hexitol ethers could be 

established. 

 

Figure 19. Examples of amphiphilic carbohydrate ethers. 

Some level of selectivity resulting from the relative kinetic reactivity of the various hydroxyl 

groups can be observed. All carbohydrates differ from each other in the configuration of their 

hydroxyl groups, resulting in stereoelectronic effects and possible hydrogen bonding which 

influence, for each sugar, a specific order of reactivity. The anomeric carbon (acetal) also 

influences the reactivity of OH groups located on its neighboring positions. In vicinal diols 

with a cis relationship equatorial-axial, the equatorial OH group is more reactive, like OH-2 

of an -glucoside; or OH-3 of a mannose derivative. This is why the simple order of 

reactivity for primary vs secondary alcohols cannot explain the reactivity of polyols and 

specifically carbohydrates. In sucrose, position 2, 1’ and 3’ are more reactive when steric 

hindrance is not involved. In some conditions, good selectivity for etherification at position 2 

can be observed [161-164,18,23], whereas bulky electrophiles lead to substitution at the 

primary positions (6 and 6’ first, then 1’ which suffers from a neighboring quaternary carbon 

atom).  

The use of epoxides as electrophile is interesting because no salt is formed during the 

reaction. From terminal epoxides, either acid or base catalyzed processes are possible, 
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whereas disubstituted epoxides require acid catalyzed processes only, because the base 

catalyzed opening of epoxide is very sensitive to steric hindrance. The synthesis of 

amphiphilic sucrose hydroxyalkylethers has been studied by several groups. A tertiary amine 

appears to be an efficient basic catalyst, likely because it produces a strongly basic 

quarternary ammonium-hydroxylate intermediate acting as a surfactant, thus contributing to a 

better homogeneity of the medium, even in dipolar aprotic solvents such as DMSO 

[30,31,165,166]. Based on these observations, heterogeneous catalysts such as strongly basic 

functionalized polystyrene resins (N-MeIm or N-OH) with appropriate interfacial 

characteristics were designed, and efficiently applied to the etherification of sucrose and other 

polyols such as trehalose and isomalt (Figure 20) [31]. In terms of regioselectivity, the typical 

preference for sucrose etherification at O-2 and 1’ was confirmed in this reaction [166,167]. 

The investigation of the thermotropic properties of each regioisomer highlighted the 

importance of regioselectivity in the self-organizing behavior, with some isomers exhibiting 

to lamellar mesophases, whereas columnar mesophases were observed for others. This was 

rationalized by changes in the intramolecular hydrogen bond network due to the 

functionalization of the key O-2 position, thus modifying the molecular shape of the 

disaccharide backbone and therefore the overall shape of the molecules [168]. Using a 

monosaccharidic series made from methyl glucoside and epoxides of various lengths [169], 

the cross effects of chain length and regiochemistry on the thermotropic liquid crystalline 

behavior could be rationalized in terms of competition between intra- and intermolecular 

hydrogen bonding.  

 

Figure 20. Amphiphilic hydroxyalkylethers obtained from disaccharides and 1,2-

epoxydodecane. 

Non-terminal epoxides have been used for designing amphiphilic bio-based ethers by opening 

with various alcohols or polyols. For example, lanthanide triflates are efficient Lewis-acid 

type catalysts for the opening in organic solvents of epoxides derived from unsaturated fatty 

acids esters such as methyl oleate [92,170,171].  
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The palladium catalyzed telomerization of butadiene in presence of carbohydrates is another 

etherification method which does not produce any salt as side product. In carbohydrate 

chemistry, it was first reported for the case of glucose and sucrose in the early 1990’s by Hill 

and colleagues [172,173]. Shortly after, Mortreux and colleagues reported the use of aqueous 

conditions and of the water-soluble phosphine TPPTS [174,175]. The reaction was further 

investigated by the Pinel team with respect to the type of palladium precursor salt and the 

solvent [176]. Applied to pentoses such as xylose and arabinose, the Henin, Muzart, 

Bouquillon and Estrine teams investigated notably the influence of the presence of amines, 

and of the nature of the solvent on the efficiency and selectivity of the reaction (Figure 21) 

[37-42]. Gebbink and Wechuysen investigated the possibility to avoid base by using other 

phosphines such as TOMPP, and established the appropriate conditions for a wide range of 

substrates, defining the following order of reactivity : sucrose > hexoaldoses > pentoaldoses > 

ketoses [43]. The reaction has been also applied isomaltitol [174] or isosorbide [177] for which 

a strong solvent effect on the regioselectivity was observed, and to starch by Pinel and 

colleagues, showing how the issue of solvent and the presence of surfactants is important for 

such less soluble substrates [178-180]. It was also used with N-methyl glucamine and the 

renewable polyene -myrcene [181] (see section on N-containing compounds). This reaction 

has attracted significant interest due to its wide scope, efficiency and ability to undergo in 

clean and safe conditions [182-186].  

 

Figure 21. Examples of amphiphilic butadienylethers obtained by telomerization of butadiene 

in presence of various carbohydrates. 

Carbohydrate ethers can also be prepared by reductive cleavage of acetals (Figure 22). Like in 

the case of glycerol ethers [187-190] the acetalation using a hydrophobic aldehyde followed by 

palladium catalyzed reduction in presence of hydrogen provides corresponding ethers in a 

rather straigtforward two-step procedure using simple and clean reagents. This strategy was 

applied to methyl glucoside and sorbitan ethers [101-103, 191].  
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Figure 22. Reductive acetal opening towards amphiphilic carbohydrate ethers. 

 

Nitrogen-containing derivatives 

Nitrogen atoms are sources of high polarity, either in amines, which are strong nucleophiles 

and can be protonated, or in amides, which can produce strong hydrogen bonding. Compared 

to sugar esters, sugar amides are particularly resistant towards the hydrolysis in alkaline 

media, which is of high interest for many applications [192-195,25]. There are several types 

of nitrogen containing carbohydrate based surfactants: i) with nitrogen already present in the 

starting carbohydrate (like in glucosamine); ii) from transformed hemiacetals into 

glycosylamines or reductive amination; iii) by amidification of carboxylic acids or lactones 

derived from carbohydrates; iv) or carbamatation of carbohydrate hydroxyl groups (Figure 

23).  

 

Figure 23. The wide range of nitrogen-containing glyco-amphiphiles. 
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From glucosamine 

Glucosamine can be commercially produced by hydrolysis of chitin (found in the shells of 

shellfish). There are two ways to get surfactants from glucosamine, either involving 

glucosamine in the reductive amination of a fatty aldehyde, or by acylating the amino group 

with a fatty anhydride or an acyl chloride. The N-alkylglucosamines may be prepared from 

acetylated glucosamine with aldehydes under excess amount of NaBH3CN, leading in most 

cases to mono- and dialkylated products [196,197]. Acylation of glucosamines leads to N-

acylglucosamine surfactants [198,199] by treatment with the appropriate acid anhydrides in 

anhydrous methanol or with an acyl chloride in water (Figure 24). 

 

Figure 24. N-heptanoyl glucosamine. 

From glycosylamines 

N-Alkylglycosylamines can be easily prepared by reacting glucose with a long-chain amine. 

The reaction is very slow and proceeds in a mixture of ethanol and water at room temperature 

for one to several days [200-202]. Similarly, treatment of carbohydrates with primary amines 

or aqueous ammonia yields glycosylamines or N-methyl glycosylamines [203], which are 

often isolated by simple filtration. They can also be made from sugars like glucose, galactose 

and maltose in a multi-step process involving peracetylation, selective bromination, 

substitution and hydrolysis [204]. The N-alkyl glycosylamines are aminals which are not 

stable in acidic or aqueous solution, however, their acyl derivatives are quite stable. The 

acylation is conducted using water and ethanol as solvent, a fatty acyl chloride or anhydride, 

leading to the amphiphilic N-acyl glycosylamines (glycosylamides) (Figure 25) [205,206]. 

This can also be performed in solventless conditions in a ball mill under microwave 

irradiation [207]. 

 

Figure 25 N-alkyl glycosylamines and amides. 
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Reductive amination 

Reductive amination of carbohydrates starts by forming an imine from the (masked) aldehyde 

with an amine, which then undergoes a reduction step. It is a more selective way to get mono-

aminated products than direct alkylation of glycosylamines which often produces over-

alkylation. Amphiphilic N-alkylglucamines can be obtained from glucose by reaction with 

fatty amines in refluxing methanol, followed by reduction over Raney nickel under hydrogen 

pressure or using sodium borohydride. Glucamide surfactants can be subsequently obtained 

by acylation using various conditions (Figure 26) [208-211]. The formation of by-products 

and co-products can be avoided when using an enzymatic route [212,213]. Telomerization of 

the renewable1,3-diene β-myrcene in presence of N-methylglucamine using Pd as the catalyst 

has been recently shown to lead to a new type of mono-N-alkylated C20-N-methylglucamine 

derivative [181]. Isomaltulose, a reducing keto-disaccharide, can undergo directive reductive 

amination with alkylamine resulting the formation of alkyl aminopolyols. The isomaltamines 

[214-216] can be selectively acylated in aqueous solution when acting with acid halides and 

acid anhydrides. From a keto sugar such as 3-ketosucrose obtained by microbial oxidation of 

sucrose, "allosucrose" surfactants could be obtained by transformation to the oxime and futher 

hydrogenation into 3-amino-allo-sucrose, then N-acylation [217,218]. 

 

Figure 26. Amphiphilic N-acyl-carbohydrate derivatives obtained after reductive amination 

of the anomeric carbon (up) or of 3-keto sucrose (down). 
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From carbohydrate acids and lactones 

Aldonic acids (or their lactones) are common compounds and some of them are even 

commercially available and can easily lead to nitrogen containing systems [219-221,153]. 

Carbohydrate lactones are also very available, either by selective oxidation of aldoses, or 

dehydrogenation of alditols and aldoses using transition metal catalysts such as palladium, 

chromium, gold, etc. Carbohydrate lactones undergo ring opening conversion into 

gluconamides by reaction with alkylamines (Figure 27) [222-224]. Uronic acid lactones are 

thus often used as precursors of amphiphilic carbohydrate-based amides [225,226] and 

recently a polyguluranate was used for the preparation of novel surafactant compositions [66]. 

Bicyclic systems like carboxymethylglycoside lactones (CMGLs) prepared from isomaltulose 

[227-228] or from the oxidation of corresponding allyl glycosides [229] provide amphiphilic 

amides by treatment with fatty amines in anhydrous CH2Cl2. Let us note that further 

functionalization of glucamides can be performed, such as in the case of sulfated urnoamides 

[230,231]. Analogous sugar thioamides have been obtained using Lawesson’s reagent and the 

peracteylated glucamide [232]. 

 

Figure 27. Amphiphilic amides prepared from carbohydrate lactones. 

 

Carbamates 

Other N-linked surfactants like sucrose carbamates, cationic analogs of galactosylceramide 

have been reported (Figure 28). Plusquellec, Queneau, Pucci and others reported the 

preparation of carbohydrate carbamates by reaction with isocyanates [233-237]. The 

carbamatation of sucrose, which is more reactive than water, can be performed in aqueous 

media such as water/isopropanol mixtures. 
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Figure 28. Examples of amphiphilic carbohydrate carbamates. 

Catanionic compounds can be obtained by mixing two oppositely charged surfactants. For 

example, adding an amino sugar to the same amount of monocarboxylic acid led 

quantitatively to two-chain catanionic analogs, whereas adding the half amount of 

dicarboxylic acid, led to the gemini catanionic analogs of galactosylceramide [238,239]. 

Condensation of carbohydrates with alkoxyamines provide oxime-ether type carbohydrate 

based surfactants which are much more stable than traditional acetal-, ester-, and even than 

amide-linked surfactants, in acidic and basic solutions. Using this strategy, Palandoken 

synthesized many oxime ether surfactants from glyceraldehyde, glucose and maltose in 

aqueous media [240]. One of the advantages of their method is precluding the protection-

deprotection sequence of hydroxy group in sugars, which can improve the overall yields and 

shorten the process. 

 

Triazoles 

Triazoles are new kinds of linkages used in the design of carbohydrate based surfactants, 

benefiting from the recent development of the 1,3-dipolar cycloadditions of azides and 

alkynes (Huisgen reaction) notably using Cu(I)-catalyzed conditions leading to high yields 

and excellent 1,4-regioselectivity [241,242]. Using this strategy, several examples of 

carbohydrate based surfactants or hydrogels with triazoles linkage have been reported (Figure 

29). Glycosyl azides are easily synthesized at room temperature by displacement of the 

corresponding sugar-chlorides with NaN3 or by direct conversion of sugars using ADMP in 

aqueous solution [243]. Different kinds of azidoalkyl derivatives may be furnished as a 

precursor for Huisgen cycloaddition [244], and find wide applications as pseudo-

glycoconjugates thanks to their stability under a wide range of chemical conditions. The 

azide-products then undergo the Huisgen reaction with long-chain propargyl ethers [245] or 

thioethers leading to many different kinds of surfactants and gelators [246-248]. The alkyne 

triple bond can be induced into sugar skeleton firstly by glycosylation of carbohydrates with 
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excess amount of propargyl alcohol or etherification with propargyl halides. The formed 

propargyl derivatives then undergo Huisgen reaction with alkyl azides [249]. 

 

Figure 29. Examples of amphiphilic triazoles obtained from carbohydrate azides or alkynes. 

 

C-glycosides  

C-glycosyl derivatives are because substituting the oxygen atom of the glycosidic bond by a 

carbon atom transforms the acetal into a regular carbon-carbon bond which cannot undergo 

acid or enzymatic hydrolysis anymore. They are therefore interesting biologically relevant 

targets, but have become also attractive for designing novel bio-based chemicals. Direct and 

clean methods towards C-glycosyl compounds have been reported, such as the metal 

catalyzed addition of allyl bromide on unprotected carbohydrates [250], and the indium 

catalyzed addition of bromomethylacrylate on unprotected carbohydrates in aqueous 

conditions [251]. These two methods have essentially been applied to biologically relevant 

targets and would be useful to revisit in the context of green low-added value chemicals. 

Below we focus on two short and direct strategies which have been applied to the preparation 

of amphiphilic C-glycosyl derivatives, both being conducted is aqueous media [252]. 

The Knoevenagel condensation of unprotected carbohydrates towards C-glycosides has been 

first reported for the synthesis of C-glycosyl barbiturates by Galbis Perez [253,254] and Wulff 

[255]. Kozikowski [256] used acetylacetone and zinc chloride as catalyst and found that the 

reaction led to mixtures of tetrahydrofuranic products. Lubineau and Canac reported in 2000 

[257] that the reaction of glucose and several other mono and disaccharides with 

acetylacetone in water and in the presence of NaHCO3 was a clean and efficient way to obtain 

selectively -C-glycosides in quantitative yields. As for targets of industrial relevance, this 

very interesting and direct method was first applied to the synthesis of the cosmetic active 

Proxylane ® (by reaction of xylose with acetylacetone, then reduction of the ketone) [258], 
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and was later developed by Scherrmann [259], towards C-glycosidic amphiphiles using 

betadiketones with longer alkyl chains (Figure 30). The atom economy of the reaction was 

later improved by Foley and Anastas [260] who reported a two-step sequence keeping the 

very available acetylacetone as starting diketone and using the intermediate 2-oxopropyl C-

glycoside as substrate for aldolisations and crotonisations using long chain aldehydes. 

 

Figure 30. Aqueous Knoevenagel reaction of unprotected carbohydrates to C-glycosides by 

condensation with -diketones. 

The other straightforward method towards amphiphilic C-glycosides has been reported by the 

Benvegnu group, using the Horner-Wadsworth-Emmons (HWE) reaction from commercially 

or easily available 2-oxoalkylphosphonates and unprotected carbohydrates (Figure 31). The 

reaction involves the aldehyde function present in the open chain form of the starting 

carbohydrate  on the aldehydic form and can be conducted in a very clean and simple basic 

aqueous medium. Four products can be obtained ( or  of the C-pyranosides and C-

furanosides), with in most cases a strong or total selectivity in the -C-pyranosides. The 

reaction can be extended to disaccharides and a wide range of chain lengths, and has also been 

conducted under solvent free conditions [32,261,262]. 

 

Figure 31. Aqueous Horner-Wadsworth-Emmons access to amphipilic C-glycosides. 
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Furanic derivatives 

Fuans, notably furfural and hydroxymethylfurfural (HMF) obtained by acid-catalyzed 

dehydration of carbohydrates are now considered as major bio-based resources for the design 

of novel bio-based chemicals [263-265]. Though essentially dedicated to targets other than 

surfactants (monomers, solvents…), there are however a few interesting pieces of work 

related to surfactants in which the furan part serves essentially as a connecting section 

between the polar and non-polar appendages. For example, a series of Diels-Alder (DA) 

adducts were obtained from long chain 2-alkyl furans with N-substituted maleimides (Figure 

32) [266]. Interestingly, such DA adducts can undergo retro-Diels Alder reaction and thus be 

thermally cleaved by simple exposure to high temperature. From HMF, Stensrud and 

Wicklund reported in a 2016 patent [267]. several amphiphilic structures. Notably, from 

furandimethanol, one OH can be enzymatically esterified with a fatty acid, leading to very 

non-polar surfactants (as only one OH group remains). Alternatively, after esterification of 

HMF with fatty acids, the aldehyde can be transformed into the imine using various amines, 

including polar ones such as aminoethyl hydroxyethylamine or bis (aminoethyl)amine. Then 

the imines are reduced to the corresponding amines. More recently, Dauenhauer and 

coworkers reported the 2-acylation of furan with activated fatty acid derivatives and the 

subsequent sulfonation at C-5 providing a novel family of ionic surfactants. A second chain 

can be introduced by aldolisation prior the sulfonation step [268]. 

 

Figure 32.  Examples of amphiphilic derivatives arising from furanic platform molecules 

arising from carbohydrates. 

A furan moiety is also present in glucosyloxymethylfurfural, the glycosylated equivalent of 

HMF obtained by dehydration of the commercially available disaccharide isomaltulose. Its 

oxidation to the carboxylic acid followed by esterification with fatty alcohols, or its reductive 

amination with fatty amines, or its use as substrate in Baylis Hillmann reactions with 

alkylacrylates are all rather short sequences towards surfactants constructed on a furanic 

central backbone (Figure 33) [269-274]. 
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Figure 33. Amphiphilic derivatives obtained by the chemistry of glycosyloxymethyl furfural 

(GMF). 

 

CONCLUSION  /  FUTURE DIRECTIONS 

Carbohydrate-based surfactants are ideal examples of bio-based chemicals, because both 

moieties arise from renewable resources. The diversity of carbohydrate structures available in 

Nature provides a huge choice for designing bio-based surfactants, and several examples have 

successfully reached the market. Whereas first motivations were to give extra added-value to 

unused agricultural crops, the evolution of chemistry towards greener, safer, cleaner products 

and processes has provided a renewal of interest for bio-based surfactants. Although 

conjectural parameters, primarily those affecting the relative price of fossil resources versus 

agricultural crops, will inevitably modulate the economic impetus for developing novel bio-

based chemicals, and among those, bio-based surfactants, it is interesting to see that the 

structural innovation illustrated by novel examples is also the way to renew and widen the 

scope of properties and uses, and offer opportunities for new IP in a very competitive sector. 

With respect to the specific field of surfactants, why and how a bio-sourced surfactant can be 

considered as a promising substitute to a fossil-based surfactant? The renewability of the 

starting materials is not, as such, a sufficient reason. Sustainability must be accompanied by 

economic viability and maintaining (at least) the technical performance, both in terms of 

applicative, physical (stability) and environmental properties [7]. Regulations aiming at 

improving the biocompatibility of chemicals used in the everyday life, and at decreasing the 

dependence on fossil resources will also play increasing roles in strategies. Thus, both the 

societal and economic aims join in strategies dedicated to the use of biomass towards 

chemicals, offering a wide playground to chemists, academic and industrial, for future 

research and innovation.  
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