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Highlights 

• Furfural and HMF offer rare opportunities for designing novel bio-based products and 

will play a central role in tomorrow’s chemistry. 

• The renewability benefit should not be overstated as it is only a part of the cumulative 

“carbon cost” of the derived chemicals.  

• Progresses result from subtle combinations of catalyst design, solvent and process 

optimization, mechanistic studies and the use of cruder, cheaper raw material. 

• Explorative synthetic chemistry using furfural and HMF must be developed for 

discovering new architectures with original molecular design, offering possible novel 

applicative properties and improved environmental impact. 

 

 

Keywords: Furfural, HMF, bio-based chemistry; platform molecules; aldehydes; renewable 

 

 

Abstract 

Research on furfural and 5-(hydroxymethyl)furfural (HMF) concerns all fields of chemistry: 

catalysis, mechanistic studies, synthetic organic chemistry, materials sciences, chemical 

engineering. The purpose of this account is, by picking a selection of very recent literature, to 

show the vitality of the field and to illustrate how transdisciplinar approaches can help 

overcoming the strong overlap between catalysts, solvent and process issues. It highlights the 

necessity to encourage researches in two main directions, one being the optimization of the 
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access to industrially relevant targets, and the second being the commitment of synthetic 

organic chemist to explorative studies on new reactions and new architectures. 
 

 

 

 

 

Introduction 

A new chemical tree from C5-C6 carbohydrates via furfural and HMF is now established. These 

two furanic aldehydes offer rare opportunities for designing novel bio-based products 

exhibiting promising applications as commodities or specialty chemicals including monomers, 

solvents, fuels, and fine chemicals. [1-14] 

Though renewability is an important point, its beneficial contribution (renewable vs fossil) to 

the overall products carbon footprint should not be overstated. All other contributions (reagents, 

catalysts, solvents, heat, separation, utilization of the product and its end of life) account indeed, 

to the major part of the cumulative “carbon cost”. This is why, in keeping with the modern 

vision of green chemistry and engineering, [15] the topic must be considered globally and 

address all issues, including cheaper and more sustainable raw materials, safer and cleaner 

processes, and diversification in molecular design of the derivatives. 

The difficulty lies on the overlap between several key fundamental issues: adapting the catalyst 

to different starting resources, finding appropriate “catalyst/solvent” couples with higher 

“dehydration-isolation” efficiency, or looking for more selective and efficient subsequent 

transformations. In all of these directions, innovation results from a subtle combination of 

catalyst design, solvent and process optimization, and mechanistic considerations. Overall, 

several facets of green chemistry subtly overlap, such as catalyst design, use of non-edible 

biomass, clean solvent and processes, molecular design, selectivity, making this topic a 

fascinating school case.  
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Figure 1. The overlapping challenges of furfural and HMF chemistries. 
 

This short opinion account aims at highlighting first the variety of approaches by picking a 

selection of very recent papers exemplifying the “resource-catalyst-solvent” triple challenge of 

furfural and HMF synthesis. Next, among applications and uses, a focus is made on furfural-

derived bio-based solvents and on HMF oxidations and reductions towards monomers. A short 

section also covers the bridge between C5-C6 chemistries. This account gives the viewpoint of 

synthetic organic chemists, stressing the benefits of the progress in the design of catalysts and 

processes, and encouraging further synthetic exploration for diversifying the realm of possible 

products and applications. 

 

1. Furfural 
1.1 Synthesis 

Xylose is the substrate of choice for the synthesis of furfural. However, there are still some 

limitations to the efficacy of its dehydration to furfural, with selectivity issues due to the 

formation of humins necessitating to start from low xylose concentrations. Recent 

investigations have focused on the exploration of different catalysts, various media, and 

possible activation by additives. 

Lam and coworkers [16] reported that activated coal fly ash at 170 °C allowed achieving 85% 

conversion of D-xylose and 62% yield of furfural (even 68% in the presence of NaCl). This 

cheap Brønsted acidic catalyst could be reused up to 6 times. A bimetallic heteropolyacid 

(Sn0.625Cs0.5PW) allowed Guo and coll. [17] to obtain furfural in 63 % yield from D-xylose at 

200 °C in a DMSO/H2O mixture for 3 h. The catalyst could be supported on a chitosan-derived 

support while keeping the same activity. Lam and coworkers [18] demonstrated the first use of 
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a modified Metal Organic Framework (MOF), MIL-101 (Cr), for the dehydration of xylose to 

furfural. Subsequently, Chang and coll. [19] obtained the furfural in 71% yield from xylose.  

Furfural rapidly degrades through resinification and condensation reactions under traditional 

diluted acid conditions, resulting in yields generally below 55% in industrial production. [6,20] 

This is overcome by the use of a biphasic system allowing to extract furfural from the reactive 

phase. The DMSO/H2O system was shown by Guo and coll. [17], Dumesic and coll. [21] and 

others to efficiently yield furfural from D-xylose, DMSO allowing suppressing side reactions. 

[22,23] Bogel-Lukasik and Morais [24] obtained furfural in 70 mol% yield from xylose in a 

water-THF biphasic medium, using high-pressure CO2 within 1 hour at 180 °C. 

Vigier and coworkers [25] showed that the use of the biphasic mixture of aqueous choline 

chloride (ChClaq) and methylisobutylketone (MIBK) led to 75% isolated yield of furfural with 

50 wt% conversion of a concentrated xylose feed. They suggested the stabilization of both 

xylose and furfural by the solvent system and the implication of an intermediate choline 

xyloside exhibiting a faster dehydration than xylose. Wan and coworkers [26] showed that 

lignocellulose also could be fractioned and converted in a one-pot reaction in ChClaq/MIBK.  

Using the 1-butyl-3-methylimidazolium (BMIM) chloride /FeCl3 system, combining an ionic 

liquid and a metal salt in a butanone/water (4:1) mixture, Wang and coll. [27] reported a 97% 

xylose conversion and a 60% yield of furfural at 150 °C in 30 min.  

The use of resources less refined than xylose can help developing the C5/C6-furanic chemical 

tree. Thus, the processes must include the initial pretreatment step leading to the reactive 

monosaccharides. For this, catalysts such as a new-type of Na/Fe(1.42)-solid acid catalyst have 

been designed, allowing the conversion of cellulose into furfural (61%) at 550 °C as reported 

by Yang and coll. [28] while Zhang and coll. [22] developed a bifunctional carbonaceous solid 

acid catalyst (HSC-SO3H) prepared by the hydrothermal carbonization and sulfonation of 

sucralose, achieving 91 mol% (21 wt%) yield of furfural directly from raw corncob after 30 

min at 175°C in a γ-valerolactone (GVL) water mixture. Using the same medium under 

microwave conditions, Huang, Pan and co-workers [29] achieved 88 wt% yield of furfural from 

xylan, as compared to 63, 61 and 60 wt% yields from corncobs, bagasse and poplar powder, 

respectively. The study indicated that the furfural yield increased with the solvent dielectric 

constant (GVL > MIBK > 2-MeTHF> THF). 

Several other agricultural residues have been investigated. For example, an oil palm frond, the 

carbohydrate-rich residue of the palm oil industry, was shown by Wu and coll. [30] to produce 

furfural in a modest 26% yield. Pinewood and eucalyptus sawdust were used by Tanksale and 

https://pubsrsc.xilesou.top/en/results?searchtext=Author%3AJames%20A.%20Dumesic
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coll. [31] for the production of furfural and HMF in 2-methyl tetrahydrofuran (2-MeTHF)/water 

in the presence of levulinic acid (LA) as the catalyst. For facilitating the early steps of the 

biomass transformation, Bizzi and coll. [32] proposed the ultrasound-assisted acid hydrolysis 

(UAAH) of several lignocellulosic materials, leading to furfural in yields ranging from 36 to 

72 mg/g using a cup horn, with even higher yields when combining ultrasounds and deep 

eutectic solvents (DES). 

 

1.2 Conversions of furfural to fine chemicals and bio-based solvents 

 

 

While the access to furfural is already a mature field, its downstream chemical tree is still an 

open space from a synthetic organic chemist’s viewpoint. The production of nitrogen-

containing structures from furfural using reductive amination has been intensely studied due to 

the wide interest of potential derivatives in the polymer or surfactant businesses. Reductive 

amination can be achieved under several sets of conditions. For example, furfurylamine (FAM) 

was prepared in 91% yield by Kawanami, Chatterjee and co-workers [33] using 5% Rh/Al2O3 

as the catalyst, with a high selectivity using NH4OH and H2 as the reducing agent. Hailes and 

coll. [34] investigated three transaminases TAms (CV-Tam ArRMut11 Mv-Tam) for the 

amination of furfural and derivatives to access furfurylamines under ambient conditions. They 

obtained FAM in up to 92% yield from furfural. Recently, Zhang, Liu and co-workers [35] 

reported the efficient and recyclable Co@NC-800 catalyst for the synthesis of primary amines. 

Accordingly, FAM was prepared in 82% yield from furfural. Wischert, Jérôme and coworkers 

[36] reported an elegant sequence towards m-xylilenediamine from furfural and acrylonitrile 

through a 100% carbon-economical pathway involving a Diels-Alder/aromatization sequence. 

De Oliveira Vigier, Pera-Titus and coworkers [37] found that a library of secondary and tertiary 

tetrahydrofurfurylamines could be efficiently prepared under mild conditions (25 °C/1 bar H2) 

using Pd/Al2O3 as the catalyst. The same group [38] disclosed other types of amines synthesized 

by aldol condensation / reductive amination sequences. Other recent important pieces of work 

are the synthesis of a wide range of amphiphilic biobased derivatives by Hausoul, Palkovits and 

colleagues [39], and the interesting access to quinolone-2-carboxylic acid from furfural 

involving an initial partial oxidation step [40]. 
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Besides the above transformations, furfural is an essential resource for the design of biobased 

solvents. Generally, bio-based solvents benefit from a renewable production, biodegradability 

and lower toxicity. [3-11] The catalytic hydrogenation, dehydration and esterification of 

furfural and its derivatives afford bio-based solvents including 2-methyl furan (2-MF), furfuryl 

alcohol (FA), tetrahydrofurfuryl alcohol (THFA), tetrahydrofuran (THF), 2-methyl 

tetrahydrofuran (2-MeTHF), γ-valerolactone (GVL), cyclopentyl methyl ether, methyl 

levulinate and pentanediol (Figure. 2). [41-43] This topic is illustrated below with a few recent 

reports on THFA and 2-MeTHF, which are among the mostly used bio-based solvents 

nowadays. [44,45] 

 
Figure 2. Bio-based solvents from furfural. 

 

Taylor, Albilali and co-workers [46] reported the hydrogenation of furfural to THFA in 95% 

yield using 0.97 % of Pd-Pt/TiO2 with a synergistic effect of Pd and Pt as confirmed by Rebrov 

Cherkasov and co-workers [47] and Shimazu and coll. [48] Using Ni0.09Zn/NC600 as the 

catalyst, Wei and coll. [49] observed a 97% conversion of furfural with 86% selectivity for 

THFA in water at 150 °C for 1 h. For accessing 2-MeTHF, Zhu and coll. found that 

Cu2Si2O5(OH)2 and Pd/SiO2 could be used as catalysts for transforming furfural in one-step and 

97% yield under ambient conditions. [50] Actually, biobased solvents are still underused. 

Interestingly, looking back in the history of solvents, a parallel can be drawn. Indeed, dipolar 

aprotic solvents were first thought not to have any future due to their limited availability and 

high prices. Yet, they are now extensively used owing to their technical benefits. As many 
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solvents must be withdrawn because of environmental concerns, needs for new solvents arise, 

and it can be foreseen that furfural (and HMF) chemistry will contribute significantly to the 

field. 

 

2. 5-Hydroxymethylfurfural (HMF) 

2.1. Synthesis  
HMF is the acid-catalyzed triply dehydrated product of C6 carbohydrates. In this reaction, the 

key issues are the selectivity, due to the limited stability of HMF in acidic conditions, and the 

possible use of hexose-containing starting materials cheaper than the very reactive fructose. 

Many studies reported recently (Table 1) have addressed both issues, by proposing specifically 

designed catalysts and solvents. 

 

Table 1. Selection of recently reported conditions for the transformation of various resources 

to HMF. 

Entry Resource 
Conditions (catalyst, additives, 

solvent, temperature, time) 
Yield Ref. 

1a Levoglucosenone 
ZSM-5/H2O/180oC/0.5 h 40 

[51] 
Amberlyst 70/H2O/180oC/0.5 h 48 

2a 
Fructose 

Sucrose 
Amberlyst 15/DES/60-80oC/1-4 h 

78 

69 
[52] 

3a Glucose 
Fe3+ modified Amberlyst 15 

THF-NaClaq/160oC/1 h 
68 [53] 

4b Glucose 
Al-D41/ChCl/H2O-MIBK 

195 oC/1.5 h 
57 [54] 

5b Fructose 
TiO2-C/microwave/DMSO 

120 oC/1 h 
90 [55] 

6a Glucose 
Sulfonated C-based solid/THF-NaClaq 

160 oC/3 h 
93 [56] 

7b 

Fructose, Glucose 

Sucrose, Inulin 

Starch, Cellobiose 

Cellulose, Wheat 

Straw 

HfO(PO4)2.0/THF-NaClaq 

160-190 oC/2-4 h 

95, 90 

87, 80 

79, 75 

70,18 

[57] 

8a Glucose ChCl-H-ZSM-5/MIBK/180 oC/3 h 49 [58] 
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aHPLC yield; bGC yield; cIsolated yield 

9a Glucose 
Yb(OTf)2/HSO3-MPR tert-

butylphenol-H2O/130 oC/1 h 
50 [59] 

10b 

Fructose 
Betaine-based cat./ChCl/H2O-MIBK 

130 oC/1 h 
88 

[60] Glucose 

Cellulose 

Lignocellulose 

Betaine-based cat./AlCl3 6H2O/MIBK 

170-180 oC/1 h 

66 

37 

53 

11a Cellulose 
Ni2.0-CS/ H2 (6 MPa) 

200 oC/ 1 h 
85 [61] 

12a 

Waste coffee 

grounds 

Glucose 

Fructose 

H2SO4-Al(NO3)3·9H2O 

microwave/ H2O-DMSO 

200W/10 min 

14 

28 

62 

[62] 

13b 

Glucose 

Starch 

Inulin 

Al-mont-10/THF-NaClaq 

180 oC/2.5 h 

80 

60 

82 

[63] 

14a Cellulose 
RuCl3/Butanol-NaClaq 

220 oC/0.5 h 
83 [64] 

15a Fructose 
CO2-H2O-isopropanol 

190 °C/2 h 
67 [65] 

16a Fructose 25 MPa of CO2/150 °C/3 h 80 [66] 

17a 

Fructose 

Sucrose 

Inulin 

[BMIM][Cl]/Carbonaceous 

microspheres-SO3H 

80 °C/0.5 h 

83 

45 

59 

[67] 

18a 

Fructose 

Sucrose 

Glucose 

[1,2,3-(MIM)3propane][Cl]3 

120-140 °C/2-5 h 

93 

72 

51 
[68] 

[1,2,3-(MIM)3propane][Cl]3-CC-SO3H 

130-140 °C/3-5 h 

97 

77 

58 

19a Starch 
ChCl-B(OH)3/NaClaq-MIBK 

195 oC/1 h 
38 [69] 

20c Fructose 
H2O/THF/NaCl, HCl (pH 2)/Na2S2O4 

170°C/2 h 
98 [70] 

21a Fructose 
H2O/DMSO/O2/no catalyst 

120°C/24 h 
77 [71] 
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2.2 Reactivity of HMF 
The recent literature on HMF-derived products is extremely rich and diversified towards either polymers 

or fine chemicals. Polymers can result from polycondensation reactions mostly leading to polyesters or 

polyamides or C-C bond formation reactions as it is the case in the production of humins. [1,7-11, 44, 

45, 72-79]. Below, we focus our survey only on oxidation and reduction reactions of HMF, two key 

steps towards the design of novel monomers and polymers (Figure 3).  
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Figure 3. HMF, a key building block for monomer synthesis. 

 

2.2.1. Oxidation of HMF 

The oxidation of HMF to furanic derivatives is challenging because both the formyl and the 

hydroxymethyl groups can undergo oxidation to various extents leading to several possible 

products with variable stabilities. Indeed, while efficient access to 2,5-furandicarboxylic acid 

(FDCA) is the focus of many studies, the selective formation of partially oxidized intermediates 

is also sought with the idea of widening the downstream scope of bio-based building blocks.  

 

2.2.1.1. Chemical oxidation  

The selective access to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) by aerobic 

oxidation of HMF was recently reported by Grunwaldt and coll. using the high activity of 

Ag/ZrO2 (yield ≥ 98%) [80] while in a related work, Xia and coll. [81] used Ag-PVP/ZrO2(1:1) 

(in 98% yield). 2,5-Diformylfuran (DFF), which exhibits the same level of oxidation as 

HMFCA, can be obtained using the Mn-based heterogenous catalysts described by Riisager, 

Chen and co-wokers (HMF conversion of 33% along with 97% selectivity to DFF) [82] and 

Cui, Wang and co-workers (>99% DFF selectivity, 100% conversion) [83] (in 32% and 99% 

yield, respectively). A photocatalytic approach was proposed by Wu and coll. [84] who 
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performed the oxidation of HMF to DFF with 87% selectivity using WO3/g-C3N4 as the catalyst 

under visible light. High DFF selectivity was also obtained by Giannakoudakis, Colmenares, 

Triantafyllidis and coworkers [85] by additive-free photo-assisted partial oxidation of HMF 

using MnO2 nanorods as catalysts. 

 

5-Formyl-2-furancarboxylic acid (FFCA), the one-step further oxidized compound, was 

selectively prepared by Dibenedetto and coll. [86] using a cheap and stable mixed oxide CuO-

CeO2 in 90% yield, using molecular oxygen as the oxidant and water as the solvent. This 

unstable platform was also prepared by Wu and coll. [87] (in 92% yield) using ruthenium on 

activated carbon in water. 

 

To selectively prepare FDCA from HMF, Silva and coll. [88] used a trickle-bed reactor in the 

presence of Ru/Al2O3 catalyst (in 98% yield, scale), while Hara and coll. used a MnO2/NaHCO3 

combination using O2 as the sole oxidant in water (in 86% yield). [89] Recently, Zhang, Xin 

and co-workers [90] developed an ionic liquids-heteropolyacids system leading to FDCA in 

48% overall yield from glucose. The selective photocatalytic oxidation of HMF to FDCA in 

96% yield was reported by Zhang, Deng and co-workers [91] CoPz/g-C3N4 was used as the 

photocatalyst under simulated sunlight and normal air pressure.  

 

Electrochemical oxidation of HMF is a useful alternative. Huber, Jin and co-workers [92] 

prepared earth-abundant bimetallic NiFe layered double hydroxide nanosheets on carbon fiber 

paper as the anode for the electrochemical oxidation of a highly concentrated solution of HMF 

to FDCA with a 99% faradic efficiency). As for Schuhmann and coll. [93] they prepared FDCA 

in 98% yield from HMF using a high-surface-area Ni foam modified with a high-surface-area 

nickel boride as the electrode. Subsequently, Sun and coll. [94] showed that NiBx displayed 

excellent conversion, selectivity and faradaic efficiency values at both the anode and the 

cathode simultaneously using water as the oxygen and hydrogen source. Two approaches by 

Choi and coll. involved the use of thin and thick sets of NiOOH, or 2,2,6,6-

tetramethylpiperidine-1-oxyl (TEMPO) and 4-acetamido-TEMPO (ACT) in mildly basic 

conditions. [95,96] Finally, Han, Gan and co-workers [97] reported a structure-optimized non-

precious coreshell NiSe@NiOx nanowire electrocatalyst for the quantitative oxidation of 5-

HMF to FDCA, showing stability over six successive cycles. An alternative electrochemical 
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approach was recently reported by Han, Song and colleagues [98] who demonstrated that the 

activity of CoO was enhanced after Se doping, creating oxygen vacancies. 

 

Dimethyl furan-2,5-dicarboxylate, an interesting derivative of FDCA because more soluble in 

many organic solvents, has been prepared quantitatively from HMF by Mejia Choi and coll. 

[99] using a bimetallic Ru@C and CoxOy-N@C catalytic system under ambient conditions in 

methanol. The latter catalyst was also shown very active for the preparation of 5-

(hydroxymethyl)furan-2-carboxylate and methyl furan-2-carboxylate from HMF and furfural, 

respectively.  

 

2.2.1.2. Enzymatic oxidation 

Fraaije and coll. disclosed a HMF oxidase (HMFO) for the oxidation of HMF and its 

derivatives. The studies indicated that HMFO hydrates the aldehyde intermediates allowing an 

excellent catalytic activity for the production of FDCA. [100] Li, Zong and co-workers [101] 

developed a series of enzymes to synthesize various valuable HMF derivatives via selective 

oxidation. Hence, DFF was obtained in 92% yield from HMF using a galactose oxidase. 

Subsequently, a xanthine oxidase from Escherichia coli was used to catalyze the oxidation of 

HMF to HMFCA in 94% yield and a Panus conchatus laccase afforded FFCA in 82% yield in 

the presence of TEMPO used as a mediator. [102] The enzymatic oxidation of HMF to FDCA 

in a one-pot reaction was achieved by Carnell and coll. [103] using the galactose oxidase M3-

5(GO M3-5), a periplasmic aldehyde oxidase (PaoABC), catalase and a horse radish peroxidase 

(HRP). Remarkably, You, Qi and co-workers [104] reported the use the CotA-TJ102 laccase as 

the catalyst, and TEMPO as the mediator for the oxidation of HMF to FFCA in 98% yield and 

98% selectivity. 

 

2.2.2. Reduction 

2.2.2.1. 2,5-Dimethylfuran 

2,5-Dimethylfuran (DMF) is a promising green solvent also used as a “second generation 

biofuel”. [105,106] The direct hydrogenation of HMF to DMF has been abundantly investigated 

using a series of noble (Ru-, Pt-, and Pd-based) and non-noble metal catalysts (Ni- and Cu-

based). [107] He and coll. [108] reported that under H2, Co-(ZnO-ZnAl2O4) allowed to obtain 

DMF in 74% yield from biomass resources. Simultaneously, Zhou and coll. [109] developed 

an excellent Co-graphene nanomaterial catalyst for the hydrogenation of HMF to DMF (94% 
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yield). Fu, Li and co-workers [110] achieved 86 % yield in DMF with a total conversion of 

HMF, using an Fe-based catalyst. Solanki and Rode [111] reported a non-noble, reusable and 

recoverable bimetallic catalyst Cu-Fe (1:2), achieving an excellent conversion (97%) and 

selectivity (93%) to DMF from HMF. Meanwhile, Shown, Mondal and co-workers [112] 

synthesized bimetallic MOF-derived nanoparticles Cu-Pd@C-B to produce DMF (96% yield) 

from HMF. Chaudret, Asensio and co-workers [113] obtained DMF in quantitative yield from 

HMF using FeC@Ru NPs as the catalyst while Kim and coll. [114] developed a one-pot 

reaction system to produce DMF in high yield from sucrose, cellobiose, starch, and cellulose 

using the tandem catalyst of Cu-Pd/UiO-66(NH2)@SGO. Fan, Li and co-workers [115] 

investigated the use of a non-noble bimetallic Cu-Ni electrode for the electrocatalytic 

production of DMF from HMF, achieving a 91%conversion and 88% faradic efficiency. A very 

nice access to DMF and its fully hydrogenated analog dimethyltetrahydrofurane was proposed 

by Royer, Marceau and colleague [116] by hydroconversion of HMF using mesoporous silica 

supported Ni catalysts. 

 

2.2.2.2. Reductive amination 

 

Hara and coll. [117] reported that the combination of Ru/Nb2O5 and 

[Ru(CO)ClH(PPh3)3]/xantphos system allowed to prepare 2,5-bis(aminomethyl)furan (BAMF) 

from HMF in 93% yield. Similarly, Mecking and coll. reported a homogenous Ru-based 

catalyst for the one-pot amination of HMF to BAMF (90%). [118] Wei and coll. reported the 

reductive amination of furfural and HMF to BAMF under benign conditions over Raney Ni 

(61% yield at 160°C from HMF). [119,120]  

 

FDCA has taken the inside track and is one of the targets of choice. However, the emergence 

of mild and selective methods offer now efficient accesses to a wider range of partial oxidation 

and reduction products from HMF, multiplying the opportunities for uses as intermediates 

towards more complex chemical architectures. 

 

3. Bridging the C5 and C6 branches of the furfural/HMF chemical tree:  

Adding a carbon atom (+ C1) to furfural or removing a carbon atom from HMF (-C1) is also 

an interesting strategy to switch from C5 to C6 sugars or vice versa. This may be related to 

price and availability issues, as furfural is still significantly cheaper and more abundant than 
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HMF. It may also be appealing in terms of reactivity, when one useful C-5 target can be 

obtained more easily or only from HMF. Below, two examples illustrate the +/- C1 options.  

Carbonylation of furfural to FDCA is an example of transformation allowing the transformation 

C5→C6, providing a bright market for furfural and CO utilizations. Yin and coll. [121] 

disclosed the conversion of furfural to FDCA through oxidative carbonylation. Subsequently, 

they developed a series of approaches involving homogeneous, biphasic and/or heterogenous 

conditions to efficiently achieve the conversion of C5 furfural derivatives to C6 molecular 

platforms. [122-124] 

The reversed C6→C5 strategy was reported by Vlachos, Sandler and co-workers [125] who 

investigated the Lewis acid (CrCl3)-catalyzed glucose transformation to levulinic acid (LA) in 

aqueous acidic (HCl) media. Liu and coll. [126] used [C3SO3Hmim]HSO4 as the catalyst and 

cellulose as the substrate in H2O at 170oC for 5 h for preparing LA in 86% yield even after 5 

recycles. Yang and coll. [127] obtained LA in 22% yield as the main side product from starch. 

Teoh [128] used solid acids of amorphous silica-alumina and silica-alumina-phosphate as 

catalyst achieving ≥40% carbon yield of LA straight from glucose. Tsang [129] studied the 

valorization of paper towel waste by producing LA under various acidic conditions with best 

yields in LA when using in 1 M H2SO4 at moderate temperatures. Furfuryl alcohol (FA) can be 

also directly converted to alkyl levulinates in the presence of metal triflates, as shown by Jérôme 

and colleagues. [130] Interestingly, LA can be further transformed into useful intermediates. 

Hence, in the presence of amines, Andrioletti and coll. [131] reported the efficient metal-free 

conversion of LA to N-substituted-5-methylpyrrolidone (Yield up to 86%). Subsequently, 
Sakai and coll. [132] used InI3 and Han, Song and co-workers [133] used Pt/P-TiO2 as catalysts 

to produce various N-substituted-pyrrolidones from LA. Varma and coll. [134] efficiently 

obtained γ-valerolactone (GVL) from LA, using AgPd@g-C3N4 as the catalyst when Palkovits 

and coll. [135-138] reported a series of studies about the transformation of LA to green solvents 

among which GVL and 2-MeTHF. Interestingly, a (non-)Kolbe electrolysis conversion of LA 

was also described. Bio-based solvents and important intermediates were also efficiently 

prepared from the glucose-derived LA and itaconic acid in a pioneering report by 

Klankermayer, Leitner and co-workers. [139] Hence, 2- or 3-MeTHF were prepared from LA 

and itaconic acid, in the presence of a Ru-based catalyst and H2 in > 90% yield, respectively. 

Such +/- C1 sequences provide thus additional opportunities for synthetic explorations aimed 

at transforming furfural or HMF. 
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Conclusions:  

The vitality of the chemistry of C5 and C6 sugars is so high that furfural and HMF will very 

likely play a central role in tomorrow’s chemistry, benefiting from efforts of chemists in all 

disciplines, from theoretical to engineering via synthesis and catalysis. While the “furfural tree” 

is rather mature already, the HMF one is still incomplete. Apart from the need to widen the 

range of resources to raw biomass that should replace refined sugars in order to improve the 

economic viability of the processes towards polymers and fine chemicals, the purity and grade 

issues of HMF and its immediate derivatives are also major challenges still to overcome. The 

viable future of the promising polyester furanoate (PEF) or analogues depends on these 

successful achievements. 

The field of furfural and HMF chemistries has benefited from the creativity of the catalysis 

community and will continue to do so. In terms of diversity and innovation in molecular design, 

it needs a stronger input of the synthetic chemistry community who is strongly encouraged to 

develop more explorative research. On the longer term, it is a requisite for enriching the scope 

of functional intermediates and offer novel biobased building blocks and synthetic pathways 

towards original architectures with breakthrough applications in all fields of chemistry. This 

diversification will be facilitated by the development of bioinspired processes, combining 

mildness and selectivity, well adapted to the chemical sensitivity of furfural and HMF.  
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