Approximate Fault-Tolerant Neural Network Systems - Université de Lyon
Conference Papers Year : 2024

Approximate Fault-Tolerant Neural Network Systems

Abstract

This paper aims to comprehensively explore challenges and opportunities to design highly efficient Neural Network (NN) systems through Approximate Computing (AxC) techniques while ensuring fault tolerance properties. By highlighting the intrinsic conflicting goals of AxC and fault tolerance principles, the study aims to stimulate and contribute to a deeper understanding of how important it is to consider fault tolerance requirements while designing approximate-computing-based systems. This is key to developing highly efficient fault-tolerant architectures for Neural Networks
Fichier principal
Vignette du fichier
Paper___ETS24___Embedded_Tutorial.pdf (329.47 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04674818 , version 1 (21-08-2024)

Licence

Identifiers

Cite

Marcello Traiola, Salvatore Pappalardo, Ali Piri, Annachiara Ruospo, Bastien Deveautour, et al.. Approximate Fault-Tolerant Neural Network Systems. ETS 2024 - 29th IEEE European Test Symposium, May 2024, La Haye, Netherlands. pp.1-10, ⟨10.1109/ETS61313.2024.10567290⟩. ⟨hal-04674818⟩
34 View
38 Download

Altmetric

Share

More